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Numerous biomedical and industrial applications require separation or sorting of
particles in systems in which it is undesirable to allow particle adhesion to a surface,
such as a centrifuge wall and a filter fibre. Such systems typically involve either adhe-
sive particles which could easily foul such surfaces or very delicate particles as is the
case with suspensions of biological cells. The current study explores an approach for
particle separation based on exposure to an oscillating straining flow, which would be
typical for peristaltic and other types of contractive wall motions in a channel or tube.
We find that particles immersed in an oscillating straining flow are attracted to the
nodal points of the straining field, a phenomenon which we refer to as ‘oscillatory clus-
tering’. A simplified theory of this process is developed for cases with isolated particles
immersed in an unbounded uniform straining flow, in which the particle motion is
found to be governed by a damped Mathieu equation. Moreover, the drift velocity
imposed on particles through oscillatory clustering is sufficient to suspend them against
a downward gravitational force in a limit-cycle oscillatory path. Theoretical approx-
imations for the average suspension height and oscillation amplitude are obtained. A
discrete-element method (DEM) for colliding and adhesive particles is then employed
to examine oscillatory clustering for more realistic systems in which particles collide
with each other and with container walls. The DEM is used to examine oscillatory
clustering of a particle suspension in an oscillating box and for standing peristaltic
waves in a channel, both with and without particle adhesion forces and gravitational
forces.

1. Introduction
Many applications in the chemical, food, energy and biomedical industries require

a continuous process for separation of solid matter from a particulate suspension
flowing through a channel or tube. Standard separation approaches include centrifugal
separation, mechanical filtering and electrostatic precipitation. All of these approaches
have the effect of drawing the particles towards a solid boundary, which for flows with
fragile particles (e.g. biological cells) or with adhesive particles may not be desirable.
Moreover, it is often easier to remove particulate matter if the particles are first
encouraged to form aggregates within the flow. One common method to encourage
aggregation or clustering of particles within the flow is through acoustic radiation, in
which sound waves induce a radiation force on the particles of a suspension via an
essentially inviscid mechanism that arises due to the fluid compressibility (King 1934).
For instance, removal of particulate matter from a combustion exhaust stream can
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be enhanced by use of sound radiation to encourage aggregate formation upstream
of the electrostatic precipitator (Gallego-Juárez et al. 1999). In this application, the
sound radiation force on the particles enhances particle kinetic energy and increases
the collision rate of the advected particles in the exhaust stream, thereby increasing
the aggregation rate. In liquid suspensions of biological cells, ultrasonic standing
waves are used to form a so-called ultrasound trap in which the acoustic radiation
force induces particles to cluster at the acoustic nodal point (Spengler et al. 2001;
Kuznetsova, Bazou & Coakley 2007). Other applications in which ultrasound waves
induce separation and size sorting of rigid particles in a microchannel are described
by Kapishnikov, Kantsler & Steinberg (2006).

The present paper is concerned with the effect on a particulate suspension of
oscillating straining induced in an incompressible flow by wall motions in a channel.
As we shall show, oscillation of the tube or channel walls provides a viable alternative
to acoustic methods for manipulation of a particulate suspension, with the possibility
of inducing particle separation, mixing and sorting. Unlike the acoustic radiation
force, which relies on fluid compressibility effects, we consider particle drift in an
incompressible fluid with viscous-dominated flow past the particles, in which particle
drift arises from the slight particle inertial overshoot in the presence of the oscillating
fluid velocity gradient. Surface oscillation in channel or tube flows is relatively easy to
achieve in a number of transport systems. For instance, in microfluidic systems, surface
oscillation can be induced by use of piezoelectric materials along the channel walls,
which has led several investigators to propose peristaltic pumping as an effective
means for inducing fluid transport for microfluidic circuits (Bar-Cohen & Chang
2000; Hartley 2000; Nguyen et al. 2002). Oscillatory wall motion is also a common
driver for fluid motion in many biological flow systems, including blood transport in
the vascular system, transport of bile through the bile duct into the small intestine,
transport of sperm in the reproductive system, food transport in the esophagus and
a wide range of processes in the digestive system.

Of these various applications, the presence of oscillating wall motions within the
colon is of particular interest, since many of the various colonic contractions induce no
net transport of the intestinal fluid (chyme). Nevertheless, the body continually incites
contractive motions of the colon wall of several different types, in both the longitudinal
and radial directions and with a range of different frequencies. Wall contractions are
used in the digestive system to achieve a variety of tasks, including mixing of fluid with
enzymatic secretions; mechanical, chemical and bacterial particle breakdown; particle
sorting and separation; nutrient and water absorption; and material compaction of
the stool (Lew, Fung & Lowenstein 1971). Within the colon, the contractions are
thought to induce mixing of the suspended particles, which are generally heavier than
the surrounding fluid, as well as enhancing aggregation of the particles suspended
in the chyme, all while removing water from the mixture through cells embedded
within the colon wall (Schulze-Delrieu et al. 1996). These various contractions are
coordinated within the digestive system, using a local neural network, which tunes the
oscillation frequency and amplitude for the given task and fluid viscosity (Gramiak,
Ross & Olmstead 1971; Jouet et al. 1998; Putz & Pabst, 2000).

There is a large literature on fluid transport in channels and tubes driven by
oscillatory wall motion, with the early work summarized in the review by Jaffrin &
Shapiro (1971). The early analytical theories of peristaltic fluid transport typically
utilize assumptions such as low Reynolds numbers, wall motion with wavelengths
much longer than the conduit thickness and small wave amplitudes (Shapiro et al.
1969). Li & Brassuer (1993) extended the lubrication theory to examine effects of
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unsteady flow due to arbitrary wall motion. Jaffrin (1973) developed a second-order
theory for peristaltic transport with weak inertia and curvature effects and concluded
that the ‘inertialess’ lubrication theory remains valid up to a Reynolds number of
about 10. Numerical investigations of peristalsis of single-phase flows have been
performed by several investigators (Takabatake & Ayukawa 1982; Pozrikidis 1987;
Rathish Kumar & Naidu 1995; Natarajan & Mokhtarzadeh-Dehghan 2000), which
remove some or all of the restrictions noted above. An interesting study of the
effect of longitudinal motions on peristaltic pumping, with particular application to
esophageal transport, is reported by Pal & Brasseur (2000, 2002), which shows that
the peak pressure and shear stress in the contraction zone can be greatly reduced by
local longitudinal shortening of the wall.

Many biological and industrial applications of peristaltic pumping involve transport
of two different fluid phases, such as liquid and gas, liquid and solid particles, gas
and solid particles and two immiscible liquids. Peristaltic pumping of annular flows
with two immiscible liquids, with one liquid in a layer near the tube wall and the
other in the tube centre, occurs in the gastrointestinal tract and various glandular
tracts. Studies of peristalsis in two-fluid annular flows are reported by Shukla et al.
(1980), Brasseur, Corrsin & Lu (1987), Ramachandra Rao & Usha (1995) and Usha &
Ramachandra Rao (2000), and transport of two-layer power-law fluids is considered
by Usha & Ramachandra Rao (1997). The motion of neutrally buoyant solid particles
in a peristaltic flow during passage of a single pressure wave is examined by Hung &
Brown (1976) and for a single particle in a series of peristaltic waves by Fauci (1992).
An analytical model for peristaltic pumping for a suspension of particles in a fluid
is considered by Srivastava & Srivastava (1989, 1997), using the assumption that the
amplitude of wall motion is much smaller than the conduit width.

The current research investigates the drift, and the resulting clustering, of particles
induced by an oscillating straining flow. This tendency of the particles to gather at
the centre of an oscillatory straining field, referred to in this work as ‘oscillatory
clustering’, does not appear to have been studied in any detail in previous literature.
Inward lateral motion of particles is noted in passing by both Hung & Brown (1976)
and Fauci (1992) in studies of particle motion during peristaltic pumping in a channel;
however, the causes of this motion are not examined, and the extent and conditions
for inward motion are not characterized. Neither of these papers examines the unusual
oscillatory particle levitation that we observe for cases with gravitational settling in
oscillating straining flows. The observation that oscillatory wall motion can be used
under certain conditions to separate particles from the surrounding fluid and sort
particles of different size by inducing a clustering of the particles along certain nodal
points along the channel or tube centre, which is further enhanced by the presence
of particle adhesion force, is of considerable relevance for explanation of a variety of
biological processes in the digestive, circulatory and reproductive systems and may
also have utility for potential new engineering separation processes, particularly for
small-scale flow systems or systems with adhesive particles for which use of standard
centrifugal separation processes might not be desirable.

In § 2 of the paper, we make use of the independence of the x and y components of
the fluid velocity field for straining flows to reduce the behaviour of an isolated particle
in a parametrically forced straining flow, in its simplest form, to a one-dimensional
mathematical model which is governed by the damped Mathieu equation. This one-
dimensional model, while neglecting important effects such as particle collision and
adhesion as well as the spatial variation of straining in the tube or channel geometry,
can be used to explore the response of particle dynamics as the controlling parameters
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of the problem are varied. For instance, the transition from a state in which all
particles cluster at the centre of the straining flow to one with different types of
particle attractors, such as a central cluster surrounded by a cloud of diffuse particles,
can be related using this model to the well-known instability of the damped Mathieu
equation (Pritchard 1969; Taylor & Narendra 1969). We also use this model to explore
the time scale associated with oscillatory clustering and the ability of the oscillatory
clustering phenomenon to suspend particles in the presence of a gravitational field.
In § 3, a discrete-element method (DEM) is described which is used to explore
particle dynamics in parametrically forced straining flows in the remainder of the
paper. Particle dynamics in an oscillating box, with a spatially uniform straining
rate, is examined in § 4. In § 5, we explore particle clustering and mixing in a tube
with axisymmetric contractions, resulting in a spatially varying straining rate. The
effect of particle adhesive forces on particle oscillatory clustering is examined in § 6.
Conclusions are given in § 7.

2. Isolated particle in an oscillating straining flow
A two-dimensional oscillatory straining flow has velocity components

u = s(t)x, v = −s(t)y, (2.1)

where the oscillating straining rate s can be written as the product of a constant
amplitude A, with dimensions of inverse time, and a dimensionless time-varying
function f (t), or s(t) = Af (t). The equations of motion for a small particle of mass
m at a position x(t) travelling with velocity v = dx/dt immersed in the flow, subject
only to the Stokes drag force, is given by

m
dv

dt
= −C(v − u), (2.2)

where u is the fluid velocity at position x, in the absence of the particle; C = 3πdμ

is the Stokes drag coefficient; d is the particle diameter; μ is the dynamic viscosity;
and d/dt denotes the material derivative travelling in the frame of the particle. (The
added mass force can also be included simply by interpreting m as the sum of the
particle mass and its added mass.) Since the x-component of velocity varies only
with the x-coordinate, and similarly for the y-component, and since the momentum
equation (2.2) is linear in v and u, we can decompose the system (2.1) and (2.2) to
write the equation of motion for each component of particle position independent of
each other. For instance, the resulting governing equation for the x-component of the
particle position is given by

d2x

dt2
+

C

m

dx

dt
− CA

m
f (t)x = 0. (2.3)

We consider the case of periodic straining with frequency ω, such that f (t) =
cos(ωt), and define dimensionless time and position variables by t ′ = ωt/2 and
x ′ = x/L. The characteristic fluid length scale is L, and the fluid velocity scale is
U = Lω/2, such that the fluid time scale is L/U = 2/ω. Equation (2.3) then reduces
to the dimensionless form

d2x ′

dt ′2 + 2ζ
dx ′

dt ′ − 2q cos(2 t ′)x ′ = 0, (2.4)

where ζ ≡ C/mω and q ≡ 2CA/mω2 are related to the particle Stokes number
St ≡ ρpd2U/18μL by ζ =1/(2St) and q =(A/ω)St−1. Equation (2.4) is a special form
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of the damped Mathieu equation, which has the canonical form

d2x ′

dt ′2 + 2ζ
dx ′

dt ′ + [a − 2q cos(2t ′)]x ′ = 0, (2.5)

where for the present problem a = 0. As noted by McLachlan (1947), (2.5) can
be converted into an undamped Mathieu equation for the variable X(t ′) using the
transformation x(t ′) = e−ζ t ′

X(t ′), giving

d2X

dt ′2 + [ā − 2q cos(2t ′)]X = 0, (2.6)

where ā = a − ζ 2. The solution of the undamped oscillator (2.6) can be either stable
or unstable, depending on the value of the parameter pair (ā, q). When (2.6) is
stable, the solution oscillates harmonically in time, whereas when (2.6) is unstable the
amplitude of oscillation increases in proportion to exp(α t ′), where α is the instability
growth rate of the undamped oscillator. Correspondingly, the solution of the damped
Mathieu oscillator equation (2.5) has oscillation amplitude that decays in proportion
to exp(−ζ t ′) for cases in which the undamped equation (2.6) is stable and varies
in proportion to exp[−(ζ − α)t ′] for cases in which (2.6) is unstable. The condition
of marginal stability of the damped Mathieu equation occurs when the damping
constant ζ is equal to the instability growth rate α of the corresponding undamped
Mathieu equation (2.6).

The stability boundary of the damped Matheiu equation (2.5) can be obtained
by interpolation from the stability diagram of the undamped Mathieu oscillator
(McLachlan 1947, p. 98), where for the present case we have ā = −ζ 2 and αcrit = ζ . A
numerical method for calculation of the stability boundary of the damped Mathieu
equation (2.5) is described by Robe & Jones (1975), using the Liapunov approach. A
sufficient condition for asymptotic stability of the damped Mathieu equation is derived
by Gunderson, Rigas & van Vleck (1974) as q − ζ 2 <

√
a ζ , which for the present case

with a =0 reduces simply to q < ζ 2. We define a ‘straining parameter’ S ≡ (2A/ω)St ,
where S can be interpreted as the Stokes number based on the straining amplitude
A rather than the oscillation frequency ω. In terms of the straining parameter, this
sufficient condition for stability reduces to S < 1/2.

We solve (2.4) for the time variation of the particle position for different values of
the straining parameter S and the dimensionless frequency b ≡ 1/ζ . Equation (2.4) is
solved using a fourth-order Runge–Kutta method with initial conditions x ′ = 1 and
dx ′/dt ′ = q/ζ = 2S/b, which are equivalent to choosing the fluid length scale L as the
initial particle displacement and setting the initial particle velocity equal to the fluid
velocity at the particle centroid. All computations are performed with time step size
�t ′ = 0.01, which provides over 300 time steps per oscillation.

The inward drifting of particles in an oscillating straining flow occurs due to the
effect of particle inertia under the influence of the oscillating fluid velocity field. As
shown in figure 1(a), the particle velocity lags the fluid velocity at the particle position
by a small amount due to the particle inertia. The consequence of this velocity lag is
demonstrated in figure 1(b), where we compare the position of a particle with that
of a passive marker (which is inertialess) released at the same initial position, given
by x ′(T ) = exp[(S/b) sin(bT )], where T ≡ 2t ′/b =Ct/m is a scaled time variable. The
fluid velocity is initially upward, causing the position of both the particle and the
passive marker to increase above the initial particle position. However, the particle
inertia causes the particle to rise slightly higher than the passive marker at the top of
the arc, as the direction of straining changes sign. Since the particle position is slightly
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Figure 1. Plots showing (a) particle velocity (solid line) and the fluid velocity at the particle
position (dashed–dotted line) and (b) position of a passive particle (dashed line) and a real
particle (solid line) for a case with S = 0.2 and b = 0.5.
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Figure 2. Plots showing particle displacement x(t) for cases with b = 0.5 and different values
of S: (a) medium straining parameter values S = 0.1, 0.2, 0.3, 0.4, 0.5 and (b) high straining
parameter values S = 0.6, 0.7, 0.8, 0.9. A dashed line is used to denote cases with S = 0.1 and
S =0.9.

higher than the passive marker in figure 1(b) at the point at which the downward
fluid velocity is the maximum, the negative peak in velocity in figure 1(a) at T ∼ 6 has
a larger magnitude than the initial upward velocity. After the direction of straining
changes again and the particle moves back upward, the opposite occurs – the particle
lags behind the passive marker such that the maximum upward velocity at T ∼ 12
is less than the initial velocity value. This cycle continues to repeat itself, with the
negative velocity peaks being less than the corresponding positive velocity peaks due
to the lag induced by the particle inertia, leading to a velocity bias that generates a
downward average particle velocity.

The governing equation for the particle position becomes unstable as S is increased.
In figure 2 we plot particle position at dimensionless frequency b = 0.5 for different
values of S, with cases for 0.1 � S � 0.5 in figure 2(a) and cases with 0.6 � S � 0.9 in
figure 2(b). From the sufficient condition of Gunderson et al. (1974), the solution of
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Figure 3. Plots showing (a) exponential form of decay of the phase-averaged particle position
for cases with b = 0.5 and S = 0.01–0.1, with increments of 0.01 and (b) clustering rate Φ
as a function of straining parameter, showing computational data (symbols) and curve fit
Φ =0.356 S2 (line).

the damped Mathieu equation for the particle position will be asymptotically stable
for all values of b whenever S < 0.5. The results in figure 2(a), as well as our results
for a wide variety of other frequency values, are consistent with this prediction. As
S increases in the interval 0.1 � S � 0.5, the height of the particle position peak near
time T ∼ 4 increases, and then the rate at which the particle approaches the centre of
straining (x =0) also increases. For the case with S = 0.5, the particle overshoots x =0
to attain a negative value of position before returning to nearly zero. For cases with
S > 0.5, the stability of the particle motion depends on the frequency value. In the
cases shown in figure 2(b), the particle overshoots the centre of straining at regular
intervals. The overshoot amplitude diminishes slowly with time for S = 0.6 and 0.7,
but for the S = 0.8 and 0.9 cases it increases with time, indicative of system instability.

An approximate solution for the rate at which particles approach the nodal point
of the straining flow can be obtained for small Stokes numbers, using the locally
implicit equilibrium Euler approximation introduced by Ferry et al. (2003). In this
approximation, the particle momentum equation (2.2) is given by

v = u − m

C

dv

dt
∼= u − m

C

Du
Dt

+ O(St)2, (2.7)

where the D/Dt notation in the last term denotes the material derivative following
the fluid. Applying this approximation to our one-dimensional model and averaging
the resulting expression for particle velocity over the oscillation period of the straining
flow yields an expression for the dimensionless particle drift velocity v̄ as

v̄ = dx̄/dt ′ = −(S2/b)x̄, (2.8)

where x̄ is the phase-averaged dimensionless particle position (i.e. the particle position
averaged over the oscillation period). Integration of (2.8) yields

x̄(t ′) = exp[−(S2/b)t ′]. (2.9)

The decay rate of the particle position is examined by numerical solution of (2.4) for
cases with 0.01 � S � 0.5 over a long time period 0 <T < 1000 with b = 0.5 (figure 3a).
For each case, the phase-averaged particle position x̄ can be fit using an exponential
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Figure 4. Plots showing the effect of downward gravitational force on the phase-averaged
particle position for cases with S = 0.1, b = 0.5 and Fr = 7.91 (solid line), 4.56 (short dashed
line), 3.53 (dashed–dotted line), 2.99 (long dashed line) and 2.63 (dashed–dotted–dotted line).

function of the form

x̄(t ′) = exp(−ϕ t ′) = exp(−ΦT ), (2.10)

where Φ = bϕ/2. The constant ϕ is called the ‘clustering rate’ and when measured
from the computational data with b = 0.5 is found to be closely approximated by a
power-law fit of the form

ϕ ∼= 0.71S2/b. (2.11)

For instance, in figure 3(b) we show the observed values of clustering rate versus the
fit Φ ∼= 0.356 S2, which is equivalent to (2.11), on a log–log plot with data for nearly
two decades in S values, yielding a linear fit with slope equal to 2. The data fit (2.11)
has the same dependence on S and b as the vanishing Stokes number approximation
(2.9) but with about a 30% difference in the coefficient.

In the presence of downward gravitational settling, the model equation (2.4)
becomes

d2x ′

dt ′2 + 2ζ
dx ′

dt ′ − 2q cos(2t ′)x ′ = −1/Fr2, (2.12)

where Fr ≡ U/
√

gRL = (ω/2)
√

L/gR is the Froude number; gR ≡ g(1−χ) is the reduced
gravitational acceleration; and χ ≡ ρf /ρp is the fluid-to-particle density ratio. We
perform a series of computations of (2.12) with different values of Fr to examine
the ability of the oscillatory clustering phenomena to suspend particles against a
mean downward gravitational force, where the phase-averaged particle position x̄(t ′)
is plotted in figure 4 for Fr = 2.63, 2.99, 3.53, 4.56 and 7.91. All values of Fr examined
exhibit suspension of the downward gravitational settling by the upward motion
of the particle induced by the oscillatory clustering mechanism. Over a long time,
the particle exhibits a limit-cycle behaviour with amplitude ψ and centred at some
(negative) mean value of x, denoted by x̄∞. The smaller the value of Fr, the further
the centre of the limit cycle from the centre of straining and the larger the amplitude
of particle oscillations in the limit cycle.
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Figure 5. Motion of a particle in time over several oscillation periods (a) in physical space
and (b) in phase space over the time interval 4000 � T � 4100, for a case with S = 0.1, b = 0.5
and Fr = 3.53. In (a), the dashed curve denotes the function 0.2 cos(bT )−1.25, which oscillates
in phase with the forcing function.

A plot showing the motion of a particle over several oscillation periods and the
corresponding limit-cycle behaviour in phase space are given in figures 5(a) and 5(b),
respectively. In figure 5(a), the solid line denotes the particle path in the limit-cycle
mode, and the dashed line is a function that oscillates in phase with the forcing
function cos(bT ). We observe that the particle oscillates with the same frequency as
the forcing function but with a different phase. The orbit of the particle in phase
space is plotted in figure 5(b) over the time increment 4000 � T � 4100 and is found
to form a closed curve indicative of limit-cycle behaviour.

In order to derive expressions for the mean height x̄∞, oscillation amplitude ψ and
phase C of the particle limit cycle, we assume that the particle position oscillates
periodically with frequency b and apply the Fourier series decomposition as

x ′(t ′) = x̄∞ + A1 sin(2t ′) + B1 cos(2t ′) +

∞∑
n=2

Bn cos(2nt ′ + Cn). (2.13)

Equating the dominant n= 1 terms of the Fourier series with a function of the
form ψ cos(2t ′ + C) = ψ cos(C) cos(2t ′) − ψ sin(C) sin(2t ′), we associate the A1 and B1

coefficients of the Fourier series with the limit cycle amplitude ψ as B1 = ψ cos(C)
and A1 = −ψ sin(C). Substituting (2.13) into (2.12) and integrating over the interval
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by oscillatory clustering for a case with S =0.1 and b = 0.5, showing (a) mean suspension
height x̄∞ and (b) oscillation amplitude ψ as functions of the Froude number. Symbols denote
computational data, and lines are the theoretical predictions from (2.16) and (2.17).

(t ′, t ′ + π) yields the result B1 = 1/(q Fr2); so the limit cycle amplitude becomes

ψ = 1/[qFr2 cos(C)]. (2.14)

Substituting (2.13) into (2.12), multiplying the result by sin(2t ′) and then integrating
over (t ′, t ′ + π) yields a solution for the phase C as

tan C = ζ. (2.15)

From (2.15) we can write cos C = (1 + ζ 2)−1/2, so that the solution (2.14) for limit
cycle amplitude becomes

ψ =
(1 + ζ 2)1/2

q Fr2
=

b(1 + b2)1/2

2 S Fr2
. (2.16)

Substituting (2.13) into (2.12), multiplying by cos(2t ′) and integrating over (t ′, t ′ + π)
yields a solution for the asymptotic phase-averaged particle position, x̄∞, as

x̄∞ = −2(1 + ζ 2)

q2Fr2
= −b2(1 + b2)

2S2Fr2
. (2.17)

The predictions (2.16) and (2.17) are compared to the computational data in figure 6
for the different values of Fr plotted in figure 5, with S =0.1 and b = 0.5, and are
found to be an almost exact match to the data.

3. Discrete-element method (DEM)
The simplified model discussed in § 2 neglects a number of important effects, such

as particle collisions and adhesive force, which lead to a coupling of the particle
dynamics in different dimensions. Further, the simplified model is not appropriate
for problems such as periodic contractions of a tube, since the flow field is more
complicated than the simply straining flow given in (2.1). In order to test applicability
of the results of the simplified model to these more realistic problems, we perform a
series of computations using a soft-sphere DEM for adhesive particles, the details of
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which are described in this section. A similar computational method has been used by
the author in previous papers (Marshall 2007; Li & Marshall 2007; Zhao & Marshall
2008), and so only a summary is given here.

These DEM computations are implemented in a multiple-time-step algorithm, which
employs three time steps to resolve processes of the order of the fluid time scale TF =
L/U, the particle time scale TP = d/U and the collision time scale TC = d(ρ2

P /E2
P U )1/5,

where EP is the particle elastic modulus. Further increase in computational efficiency
is obtained for the problem of particles in an oscillating tube by advecting the particles
on a Cartesian grid and using a level-set function to represent the tube boundaries
within the Cartesian grid (Mousel 2006). In the problems examined in this paper, the
fluid flow is prescribed, and the particles are assumed not to affect the fluid flow.

The DEM solves the linear and angular momentum equations

m
dv

dt
= FF + FA, I

dΩ

dt
= MF + MA (3.1)

for each particle in the system, where v and Ω are the particle velocity and rotation
rate; FF and FA are the fluid forces and the lumped collision and adhesion forces;
and MF and MA are the fluid and lumped collision and adhesion torques. Particles
moving in a viscous fluid are subject to a variety of forces, including lift, drag, added
mass, buoyancy and Magnus and gravity forces (Maxey & Riley 1983). The relative
contribution of these forces to the total fluid force exerted on a particle is dependent
on dimensionless parameters such as the dimensionless particle diameter ε ≡ d/L,
the fluid-to-particle density ratio χ = ρF /ρP , the dimensionless shear parameter
B ≡ ωL2/ν and the particle Reynolds number Rep ≡ |v − u|d/ν, where ω is the fluid
vorticity magnitude and ν is the kinematic fluid viscosity. In what follows, it is
assumed that ε and Rep are much less than unity. The dominant force in most flows
with small particle Reynolds number is the fluid drag. For instance, the ratio of the lift
and Magnus forces to the drag force scale as O(εB1/2) and O(εB), respectively, and
the ratio of the buoyancy and added mass forces to the particle inertia scales as O(χ).
Assuming that the particles are small compared with the flow dimensions (ε � 1)
and that the vorticity is limited by the viscous boundary layer scaling (B � O(1)), the
lift and Magnus forces can be neglected.

For particles with small ε and Rep , the drag force is given by

Fd = −3πdμ(v − u)f. (3.2)

The Stokes drag solution for an isolated sphere is recovered for f =1. A correction
proposed by Di Felice (1994) to account for particle crowding in non-dilute flows is
used with f =(1−c)−3.7, where c(x, t) is the local equivalent three-dimensional particle
concentration. The area-based particle concentration c̄ is determined by spreading
the cross-sectional area of each particle in a ‘cloud’ with radius Rn, selected to be
the average separation distance between the particle and the nearest four particles,
and with Gaussian distribution function D(x −xn) = (1/πR2

n) exp[− |x − xn|2 /R2
n]. The

cloud amplitude An = πd2/4 for two-dimensional flows is set equal to the area of the
particle projection on the plane of motion. Summing over the contributions of the
nearby particle clouds yields the area-based concentration c̄(x, t):

c̄(x, t) =

N∑
n=1

AnD(x − xn, Rn). (3.3)
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The equivalent three-dimensional concentration field c(x, t) is obtained by requiring
that the two- and three-dimensional cases have the same ratio of the characteristic
particle separation distance  to the particle diameter, which yields c =(4/3π1/2)c̄3/2.

The fluid-induced viscous torque MF arises from a disparity between the particle
and fluid rotation rates, and is given by

MF = πμd3

(
1

2
ω − Ω

)
. (3.4)

The reduced gravity force Fg , pressure gradient force Fp and added mass force Fa

are given by

Fg = m(1 − χ)g, Fp = χ m
Du
Dt

, Fa = −cMχ m

(
dv

dt
− du

dt

)
, (3.5)

where g is the gravitational acceleration vector; D/Dt denotes the rate of change
with time following a fluid particle; and the added mass coefficient for a sphere is
cM = 1/2.

Colliding particles experience a normal force from elastic particle deformation, as
well as resistance responses related to sliding and rolling. Some of the computations
presented in this paper also involve adhesive force between the particles, whereas
other computations do not. In the present section we provide the full DEM theory
including adhesive forces. The theory without adhesive forces can be obtained as
a limiting case of the theory presented here, and the ‘adhesionless’ theory has also
been described in another recent publication (Marshall 2006). The total collision and
adhesion force and torque fields on particle i with radius ri are given by

FA = Fnn + Fs tS, MA = riFs(n × tS) + Mr (tR × n), (3.6)

where n =(xj − xi)/|xj − xi | is the unit normal vector oriented along the line connec-
ting the centres of the two colliding particles, i and j. The sliding resistance acts in a
direction tS , corresponding to the direction of relative motion of the particle surfaces
at the contact point projected onto the contact plane (the plane orthogonal to n).
The sliding resistance also imposes a torque on the particle in the n × tS direction.
The rolling resistance exerts a torque on the particle in the tR × n direction, where tR

is the direction of the ‘rolling’ velocity.
The normal elastic force of two colliding particles can be expressed in terms of the

effective radius R and the effective elastic and shear moduli, E and G, defined by

1

R
≡ 1

ri

+
1

rj

,
1

E
≡ 1 − σ 2

i

Ei

+
1 − σ 2

j

Ej

,
1

G
≡ 2 − σi

Gi

+
2 − σj

Gj

, (3.7)

where Ei , σi and ri are the elastic modulus, Poisson ratio and radius of particle i,
respectively. The adhesive force between the two particles depends on the surface
potential γ , where the work required to separate two spheres colliding over a contact
region of radius a(t) is given by 2πγ a2 in the absence of further elastic deformation.
The normal particle force is further decomposed into an elastic part Fne and a
dissipative part Fnd . The elastic part of the normal force can be expressed in terms
of the contact region radius a(t) and the particle overlap δN by (Chokshi, Tielens &
Hollenbach 1993)

δN

δC

= 61/3

[
2

(
a

ao

)2

− 4

3

(
a

ao

)1/2
]

,
Fne

FC

= 4

(
a

ao

)3

− 4

(
a

ao

)3/2

, (3.8)
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where the particle overlap δN is defined by

δN = ri + rj − |xi − xj | . (3.9)

The critical overlap δC , the critical normal force FC and the equilibrium contact radius
ao are given by (Johnson, Kendall & Roberts 1971)

FC = 3πγR, δC =
a2

o

2(6)1/3R
, ao =

(
9πγR2

E

)1/3

. (3.10)

As two particles move away from each other, they remain in contact until Fne = −FC

and δN = −δC due to the necking within the contact region caused by particle adhesive
forces. Beyond this state any further separation leads the two particles to break apart.
In the limit of no adhesive force, (3.8) reduces to the classic particle repulsion force
formula of Hertz (1882).

In addition to the normal adhesive force, we employ a normal dissipative force to
account for the fact that colliding particles at sufficiently low Stokes number, below
about St = 10, exhibit no rebound due to the viscous fluid forces between the particles
(Joseph et al. 2001). The dissipative part of the normal force (Fnd) is given by

Fnd = −ηNvR · n, (3.11)

where vR = vCi − vCj is the relative particle surface velocity at the contact point;
vC,i = vi + Ω i × r i is the surface velocity of particle i at the contact point; r i = rin
and rj = −rj n are the vectors from the particle centroids to the contact point; and
ηN is the normal damping coefficient. Tsuji, Tanaka & Ishida (1992) propose a form
for the damping coefficient as

ηN = ᾱ(mkN )1/2, (3.12)

where kN = (4/3)E a(t) is the normal stiffness coefficient. For cases with zero restitution
coefficient, the coefficient ᾱ ∼= 1.27.

The presence of particle adhesion leads to a torque that resists particle rolling. For
uniform-size spherical particles, the ‘rolling velocity’ vL of particle i is given by (Bagi
& Kuhn 2004)

vL = −R(Ω i − Ωj ) × n. (3.13)

We express the rolling resistance torque Mr as a linear function of the particle rolling
displacement ξ =(

∫ t

t0
vL(τ )dτ ) · tR in the ‘rolling direction’ tR = vL/|vL|, such that

Mr = −kR ξ. (3.14)

Rolling involves an upward motion of the particle surfaces within one part of the
contact region and a downward motion in the other part of the contact region.
The presence of an adhesion force between the two contacting surfaces introduces a
torque resisting rolling of the particles. An expression for the rolling resistance due
to van der Waals adhesion was derived by Dominik & Tielens (1995), which yields
the coefficient kR as

kR = 4FC(a/a0)
3/2. (3.15)

Dominik & Tielens (1995) further argue that the critical resistance occurs when the
rolling displacement ξ achieves a critical value, corresponding to a critical rolling angle
θcrit = ξcrit/R. For ξ > ξcrit , the rolling displacement ξ in (3.14) is replaced by ξcrit .

Small particles at low particle Reynolds number do not slide significantly, so we
select a fairly simple form for the sliding resistance, which primarily serves to suppress
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sliding motion. The effect of van der Waals adhesion on tangential sliding force was
examined by Savkoor & Briggs (1977), and a simplified model was proposed by
Thornton (1991). In the sliding resistance model employed in this paper, a springlike
expression for the sliding resistance of the form (Cleary, Metcalfe & Liffman 1998)

Fs = −kT

( ∫ t

t0

vS(ξ )dξ

)
· tS (3.16)

is used when the resistance force is less than a critical value Fcrit . Here the slip
velocity vS(t) is the tangent projection of vR to the particle surface at the contact
point, or vS = vR − (vR · n)n, and the slip direction is tS = vS/ |vS |. An expression
for the tangential stiffness coefficient kT is derived by Mindlin (1949), which can be
written in terms of the contact region radius a(t) as kT = 8Ga(t). The critical sliding
force is approximated using the expression

Fcrit = μf |Fne + 2FC | , (3.17)

where FC is given in (3.10) and μf is the friction coefficient. The expression (3.17)
was shown by Thornton (1991) to provide results in reasonable agreement with
experiments. For |Fs | � Fcrit , the sliding resistance is given by the Amonton expression
Fs = −Fcrit .

4. Oscillating uniform straining flow
In order to evaluate the influence of collisions on the oscillatory clustering pheno-

menon, we perform two-dimensional computations in a box with oscillatory
compression in the x- and y-directions. For the flow field given by the periodic
straining flow (2.1) with dimensionless straining rate s(t) = (2S/b) cos(2t ′), the box
boundaries are specified by

xB = ± exp[(S/b) sin(2t ′)], yB = ± exp[−(S/b) sin(2t ′)]. (4.1)

The particles were initially placed on an array covering the inside of the box, and
then the particle position was randomly perturbed by a small amount, with maximum
perturbation equal to about 20% of the initial particle separation distance. The particle
initial velocity was set equal to the local fluid velocity.

The transport of particles is controlled by a number of dimensionless parameters.
For adhesionless flow, these parameters include the dimensionless particle diameter
ε ≡ d/L, an elasticity parameter λ≡ E/ρpU 2, the average effective volume-based
particle concentration c0 and the density ratio χ , Stokes number St, Froude number
Fr and dimensionless straining amplitude S and frequency b defined in § 2. The
characteristic fluid velocity is chosen as U = Lω/2, and the fluid length scale L is
set equal to half the initial width of the box. The values of these parameters are
selected in the present section to be typical of an aqueous solution with particles
that are close to neutrally buoyant. For all cases considered, we set ε = 0.01, χ =0.99,
c̄0 = 0.05 (corresponding to an effective three-dimensional concentration c0 = 0.008)
and λ=104 and vary the values of S, b and Fr as indicated in table 1.

A multiple-time-step scheme is used to solve for the particle motion and collisions,
with a fluid time step �t , a particle time step �tP and a collision time step �tC .
Using the time scales given in § 3, these time steps can be related to governing
the dimensionless parameters by �t/�tP = O(1/ε) and �tP /�tC = O(λ2/5). Based
on the typical values listed in table 1, we choose �t/�tP = 10 and �tP /�tC = 40.
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Case S b Fr Case S b Fr

A1 0.1 0.5 ∞ B1 0.2 0.5 8
A2 0.2 0.5 ∞ B2 0.2 0.5 5
A3 0.3 0.5 ∞ B3 0.2 0.5 3
A4 1.0 0.5 ∞ B4 0.2 0.5 2

B5 0.2 0.5 1

Table 1. Parameters used for computation of particles in an oscillating box. For all cases,
ε = 0.01, χ = 0.99, c0 = 0.05 and λ = 104.

(a) (b) (c)

(d ) (e) ( f )

Figure 7. Time series showing oscillatory clustering of particles for case A1 after every 10
oscillations, at times (a) t = 0, (b) 31.6, (c) 63.2, (d ) 94.8, (e) 126.4 and (f ) 158. The box
positions are drawn at the current time (solid line) and at t = 0 (dashed line).

The dimensionless fluid time step is set as �t =0.01. In the following, time is non-
dimensionalized by L/U = 2/ω, such that the dimensionless oscillation period is equal
to π for all cases, and all velocities and length variables are non-dimensionalized by
U and L, respectively.

A time series showing the effects of oscillatory clustering on the particle positions
for a case with S = 0.1 and b = 0.5 (case A1) is given in figure 7. The figure plots the
particle positions in intervals of approximately 10 oscillation cycles, where the particle
box at the time corresponding to the particle positions is indicated by a solid line, and
the initial particle box is indicated by a dashed line. The particle array compresses in
a nearly homogeneous reduction in spacing between particles, although the ordered
array of particles is broken up on the left and right sides, where the particles have
collided with the box sides due to inertial overshoot during the first oscillation. As
time passes, the particles continue to cluster in a progressively more concentrated
region near the centre of oscillation, until they finally reach the point of maximum
concentration, beyond which further constriction is limited by particle collision.

Contraction of the particles is measured by the root mean square (r.m.s.) particle
position in the x- and y-directions. In figure 8 we plot time variation of yrms for cases
A1–A4, with straining parameter values of S =0.1, 0.2, 0.3 and 1, respectively. The
particle positions at time t = 200, after over 60 oscillation cycles, for cases A1–A3
are plotted in figure 9. For these cases, the particles contract into a diamond pattern
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Figure 8. Plots of r.m.s. value of the particle y-positions for cases A1 (solid line), A2 (short
dashed line), A3 (dashed-dotted line) and A4 (long dashed line), fit by a 10th-order polynomial.

(a) (b) (c)

Figure 9. Plots of particle positions at t =200 for cases (a) A1, (b) A2 and (c) A3. The
dashed rectangle is the original box position, and the solid rectangle is the box position at
time t = 200.

centred at the origin, in which the particles are packed to the maximum concentration.
The diamond shape periodically stretches in the x- and y-directions in phase with
the compression and elongation of the box. Once this limiting state is attained, the
values of xrms and yrms oscillate about a constant mean value, and no further net
contraction of the particles is possible. As predicted by the simple one-dimensional
theory in § 2, the clustering rate increases with increase in the straining parameter S,
up to the limiting value of S for stability of the system.

The diamond shape observed for the particle clusters forms due to the combination
of the inward particle drift, particle collision forces and imposed oscillating flow field.
The collision forces for cases with no adhesion include the elastic and dissipative
normal forces and the sliding resistance. The normal forces serve primarily to restrict
inward motion of the particles so as to limit particle overlap. Sliding resistance exerts
a torque on the particles that leads to rotation of particles relative to each other
and subsequent deformation of the cluster by particle rolling. However, computations
performed for case A3 both with and without sliding resistance exhibit nearly identical
results, indicating that the form of the cluster is not sensitive to the form of the
expressions used for collision forces.
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(a)

(b)

Figure 10. Particle positions at t = 200 for case A4 (a) with modification of particle drag
to account for crowding and (b) with isolated particle drag expression (f = 1). The dashed
rectangle is the original box position, and the solid rectangle is the box position at time t = 200.

Case A4, with S = 1, exhibits rather different behaviour from the other three cases,
which is perhaps associated with the observation that the corresponding damped
Mathieu equation (2.4) is unstable for this case (see figure 3b). For this case the
values of xrms and yrms exhibit nearly constant oscillation amplitude and mean value
with time. The particle positions form a very elongated cluster within the box, as
seen in figure 10(a). We find that the form of the particle cluster for cases in which
the corresponding Mathieu equation is unstable can be significantly influenced by the
particle crowding modification to the drag force. To illustrate this point, we repeated
the computation in case A4, using the particle drag expression for isolated particles
(i.e. setting f = 1 in 3.2). The corresponding form of the particle cluster using the
isolated particle drag expression is shown in figure 10(b). For the latter case, the
particles do not cluster in the centre of the straining flow, and they also do not mix
throughout the box. They instead stretch outward in a highly concentrated, wavy
sheet which oscillates back and forth in the x- and y-directions with the oscillations
of the box. The particles are nearly touching each other within this sheet, but they
exhibit no tendency to gather near the box centre. These computations, as well as
other cases examined with unstable Mathieu equation, suggest that modifications to
the drag due to particle crowding may in some cases be able to stabilize the particle
dynamics to the effects of instability in the corresponding Mathieu equation in the
isolated particle model.

Based on the theory in § 2, the oscillatory clustering phenomenon is expected to
suspend particles against the gravitational force for cases in which the limit-cycle
centroid position x̄∞ > −1, which from (2.17) yields a criterion for particle suspension
at some distance above the bottom of the box as

Fr > Frcrit =

√
2

q
(ζ 2 + 1)1/2 =

b(1 + b2)1/2√
2 S

. (4.2)

We examine a series of computations (cases B1–B5) for S = 0.2 and b = 0.5, with
different values of Fr. The box motion is identical for all five of these cases. For
these values of S and b, the critical Froude number from (4.2) is Frcrit = 1.98. For
all cases examined, it is found that after a short transient the particles enter into a
limit-cycle behaviour which is repeated for the remainder of the computation. Plots
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Theory Computation: average particle y-position

Suspension Oscillation
Case Fr height (−x̄∞) amplitude (ψ) Minimum Maximum Average Amplitude

B1 8 0.06 0.022 0.018 0.043 0.029 0.013
B2 5 0.16 0.056 0.046 0.12 0.077 0.037
B3 3 0.43 0.16 0.15 0.38 0.25 0.12
B4 2 0.98 0.35 0.28 0.69 0.46 0.21
B5 1 3.9 1.4 0.58 1.31 0.91 0.37

Table 2. Comparison of theoretical predictions for particle suspension height (−x̄∞) and
oscillation amplitude (ψ) from (2.16) to (2.17) with computational values for an oscillating box
at different Froude numbers. Cases B4 and B5 have Froude number at or below the critical
value.

(a) (b) (c) (d ) (e)

Figure 11. Plots of particle positions at two times separated by a half-period – t = 498.42 (top
row) and t = 499.98 (bottom row) – for cases with different Froude numbers (a) B1, (b) B2,
(c) B3, (d ) B4 and (e) B5. Rectangles denote box position at the current time, and square
boxes denote the initial box position.

of the particle positions at two times during this limit cycle, separated by half of
an oscillation period, are shown in figure 11. The average suspension height and the
range of particle positions for these five cases are listed in table 2.

For cases B1–B3, the Froude number is above the critical value, and the particles
are suspended at a position above the bottom surface of the box. For large Froude
numbers the effect of gravity is small, and so the particles form a diamond shape
that oscillates with the box, similar to that observed for case A2 with no gravity. As
the Froude number is decreased in case B3, the diamond begins to deform, and the
top part of the diamond drops downward with the bottom part elongating downward
and reaching almost the bottom of the box at each oscillation cycle. For case B4, the
Froude number is exactly at the critical value, and we see that the upward transport
of the particles via oscillatory clustering is no longer sufficient to suspend them
off the bottom surface of the box. The particles are compressed in the y-direction
due to oscillatory clustering, so that they fall within a semi-clustered region that
extends downward to the bottom box surface, stretching up and down with each
box oscillation. For case B5, the Froude number is half of the critical value, and the
particles are seen to form a heap that sits at the bottom of the box. This heap grows
wider as the box moves upward and thinner as the box moves downward in response
to the straining flow in the x-direction.
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Figure 12. Time variation of maximum granular kinetic energy K for cases B1–B5,
fit using a fifth-order polynomial.

The theoretical values for suspension height and oscillation amplitude from (2.16)–
(2.17) are listed in table 2 for cases B1–B5. These values are compared to the
maximum, minimum and mean value over time and the amplitude of variation
of the spacially averaged y-position of the particles, where the time averaging is
performed over the interval t > 300 for which the particles have achieved a limit-cycle
configuration. For the three cases B1–B3 with Froude number above the critical
value, the oscillation amplitude compares reasonably well with the theoretical values
from (2.16). The predicted particle suspension height from (2.17) is somewhat above
the interval of oscillation of average particle position in the DEM computations
for these cases. We note that the inclusion of the particle crowding correction in the
particle drag equation has a substantial effect on lowering the amplitude of oscillation
and in particular in decreasing the maximum value of −yave . Runs with the same
parameter values but without this crowding correction term yield values fairly close
to the theoretical predictions. For cases B4 and B5, the Froude number is at or below
the critical value, and the oscillation amplitude and mean particle height are both
less than the predicted theoretical values for an unbounded domain. This result is
expected for this case due to particle collision with the bottom surface of the box.

The granular kinetic energy of the particles, K ≡ 0.5|v − v̄|2, is determined for all
cases by computing the spatially averaged particle velocity field v̄ on a 100 × 100 grid
at each time step and then evaluating K in each grid cell. Within the region occupied
by the particle clusters, the granular kinetic energy is the strongest in the region
farthest from the centre of straining in the y-direction. This observation is consistent
with the prediction from § 2 that the particle oscillation amplitude ψ increases with
distance away from the centre of straining. The magnitude of the granular kinetic
energy also increases with decrease in the Froude number, as demonstrated in the
plot of maximum value of granular kinetic energy (fit using a fifth-order polynomial
to smooth out fluctuations) versus time in figure 12 for cases B1–B5. The farther the
average particle position away from the centre of the box the higher the granular
kinetic energy.
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Figure 13. Plot showing positions of particles with diameter d/L =0.015 (grey) and
diameter d/L =0.005 (black) for a case with S =0.2, b = 0.5 and no gravity, at time t = 800.

The effect of oscillatory clustering for a case with two different particle sizes
is examined for S = 0.2 and b = 0.5, where we use equal number of particles of
diameters d1 = 0.005 and d2 = 0.015 initially arranged in a staggered pattern on a
grid. In agreement with the theory in § 2, the larger particles respond more quickly
to the oscillation of the straining field, since they have nearly nine times the Stokes
number of the smaller particles. The larger particles quickly move through the field of
smaller particles and cluster into a diamond shape at the centre of the box, similar to
that shown in figure 9(b), leaving the smaller particles behind in a disorganized cloud.
The smaller particles also eventually move towards the box centre due to oscillatory
clustering, at a much slower rate than the larger particles, and deposit on the sides
of the diamond-shaped cluster formed of large particles, as shown in figure 13. This
computation demonstrates that oscillatory clustering can not only be used to separate
particles from a fluid in which they are suspended but that it also serves as a potential
approach for fabrication of structured particle aggregates with layers differentiated
by particle Stokes number.

5. Particle dynamics subject to periodic contractions in a channel
The current section investigates particle clustering in a peristaltic contractile flow

with no net transport, which exemplifies a flow with an oscillatory but non-uniform
straining rate. This flow is also of practical interest as an idealization of phasic
contractions observed in the colon. The flow field is solved using the lubrication
theory, which requires that the flow Reynolds number ReF = UL/ν =ωL2/2ν and
the wavenumber k ≡ 2πL/λ are small compared to unity. In practice, however, it is
noted by Jaffrin (1973) that the lubrication assumption remains reasonably valid for
peristaltic flows even for non-small values of the flow Reynolds number up to about
10. The current analysis for peristaltic motion follows a similar approach to that used
by Li & Brasseur (1993).

We consider a two-dimensional channel which is periodic with length λ and half-
width L and no net flow within the channel. The channel side walls are symmetrically
perturbed, such that at time t the side walls are at y = ±h(x, t). The governing
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equations for the lubrication approximation are

∂u

∂x
+

∂v

∂y
= 0,

∂p

∂x
= μ

∂2u

∂y2
, (5.1)

subject to the condition of periodic over length λ in the x-direction and the boundary
conditions

u(x, h, t) = 0, v(x, h, t) =
∂h

∂t
,

∂u

∂y
(x, 0, t) = 0, v(x, y, t) = 0. (5.2)

Integrating the momentum equation in (5.1) twice over y and using (5.2) yields the
parabolic profile

u(x, y, t) = −h2 − y2

2μ

∂p

∂x
. (5.3)

Substituting this result into the continuity equation and integrating over y, making
the usual assumption that pressure is a function of x and t, yields an expression for
the vertical velocity component as

v(x, y, t) =
h

μ

(
h

2

∂2p

∂x2
+

∂h

∂x

∂p

∂x

)
y − y3

6μ

∂2p

∂x2
. (5.4)

Imposing the kinematic boundary condition (5.2) yields an equation for pressure
gradient as

h3

3

∂2p

∂x2
+ h2 ∂h

∂x

∂p

∂x
= μ

∂h

∂t
. (5.5)

Integrating this equation once over x yields

∂p

∂x
=

1

h3

[
G0(t) + 3μ

∫ x

0

∂h

∂t
(s, t) ds

]
, (5.6)

where the function G0(t) depends on the phase of the channel wall motion. The
condition of periodicity over the wavelength λ leads to the compatibility condition∫ λ

0

∂h

∂t
(s, t) ds = 0, (5.7)

which must be satisfied by the channel wall motion in order for mass to be conserved.
We now consider standing waves on the channel of the form

h(x, t) = L + H cos(ωt) cos(kx). (5.8)

For waves of this form, the pressure gradient vanishes at x =0, so G0(t) = 0.
Substituting (5.8) into (5.6) and (5.5) gives

∂p

∂x
= −3μωH

kh3
sin(ωt) sin(kx), (5.9a)

∂2p

∂x2
= −3μωH

h3

[
sin(ωt) cos(kx) +

3H

2h
sin(2ωt) sin2(kx)

]
. (5.9b)

Substitution of (5.9a,b) into (5.3) and (5.4) yields the fluid velocity field associated
with the wall motion (5.8).
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The length and velocity variables are non-dimensionalized using the channel width
as the fluid length scale L and U = ωL/2 as the fluid velocity scale. Time is non-
dimensionalized by the convective time scale L/U = 2/ω. We define a dimensionless
wavenumber α ≡ kL = 2πL/λ and an amplitude ratio η ≡ H/L. In terms of these
variables, the dimensionless velocity components become

u′ =
3η

α h′

(
1 − y ′2

h′2

)
sin(2t ′) sin(αx ′), (5.10a)

v′ = −3η
y ′

h′

(
1 − y ′2

h′2

)
sin(2t ′) cos(αx ′) − 3

2

η2

h′
y ′

h′

(
1 − 3y ′2

h′2

)
sin(4t ′) sin2(αx ′), (5.10b)

where dimensionless variables are denoted with primes. We perform computations
over one period of a standing wave field, with dimensionless wavelength λ= 10
(corresponding to α = 0.63) and amplitude ratio η =0.4. The flow Reynolds number
ReF = 20, which is similar to that observed for contractions of the colon (Jaffrin
1973). No gravitational force was used in the computation. The straining flow field
has nodal points at the start and end of the period and at the mid-period location,
corresponding to x =0, 5 and 10. The Stokes number is related to the particle size
and flow Reynolds number by St = ε2ReF /18χ .

Two sets of computations were performed: one for ‘fine’ particles with ε ≡ d/L =
0.02 and one for ‘coarse’ particles with ε = 0.1. The straining parameter S and
frequency parameter b at the nodal points of the peristaltic channel flow are related
to the Stokes number by S = 3ηSt and b =2St . In the computation with fine particles,
the Stokes number is so small (0.0004) that very little clustering of the particles is
observed. The computation with the coarse particles had a larger Stokes number
(0.01), and the oscillatory clustering was clearly visible. For instance, in figure 14
we plot the particle positions at four different times, over which the channel walls
oscillate nearly one hundred times. The particles are initially uniformly distributed
on an array throughout the channel, with average area-based concentration c̄0 = 0.19
(and an effective volume-based concentration c0 = 0.06). Oscillatory clustering causes
the particles both to move in the horizontal (x-) direction towards the nodal points
and to contract in the vertical (y-) direction at the nodal point locations. The vertical
contraction is limited by particle contact, such that at the final time a bridge forms
connecting the particles both above and below the nodal points. The r.m.s. value of
the vertical (y) position of the particles is plotted versus time in figure 15, which
exhibits a slow decrease in time as the particles contract towards the nodal points of
the straining field.

6. Effect of particle adhesion force
We have observed in the previous sections that oscillating straining flows cause

particles to cluster at the nodal points of a straining flow and that the rate of
clustering is greater for larger particle sizes (with higher Stokes numbers). We now
examine the effect of particle adhesion on this phenomenon. In particular, we are
interested in whether particle adhesion increases the clustering rate and in the structure
of the particle aggregates that form in an oscillating straining flow. A van der Waals
adhesion force is imposed between the particles in this study, using the theory
developed in § 3. We denote by A the effective Hamaker constant for the interaction
of two similar particles through a fluid medium. If δ denotes the characteristic



Particle clustering in periodically forced straining flows 91

(a)

(b)

(c)

(d)

Figure 14. Particle positions and channel wall locations for periodic peristaltic contractions
of a channel with amplitude ratio 0.4 and wavelength 10, with plots given at (a) t = 0.6,
(b) t = 99.8, (c) t = 198.7 and (d ) t = 299.5.
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Figure 15. Decay of r.m.s. y-coordinate of particles with time for the same case as described
for figure 14, fit using a fifth-order polynomial.

minimum separation distance of two particle surfaces within the contact region, the
effective surface potential γ can be related to A by

γ =
1

2

∫ ∞

δ

A

6πh3
dh =

A

24π δ2
, (6.1)
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Figure 16. Comparison of r.m.s. y-position of particles for an oscillating box with no adhe-
sion (dashed line) and with adhesion (solid line). Curves are fit using a 10th-order polynomial.

where A/6πh3 is the van der Waals force per unit area between two infinite plates
separated by a distance h. From a computational study of the elastohydrodynamic
response of two colliding particles, Serayssol & Davis (1986) show that the minimum
separation distance between two colliding particles scales as δ ≈ (μUd3/2/2πE)2/5.
This estimate is found by Serayssol & Davis (1986) not to change significantly
with addition of adhesive forces between the surfaces. We employ a dimensionless
‘adhesion parameter’ to characterize the magnitude of particle adhesive force relative
to the particle inertia, which is defined by

φ ≡ γ

ρpU 2R
. (6.2)

We first examine the effect of adhesion on particle motion in an oscillating box, with
S = 0.01, b =0.05, ε = 0.01 and an average area-based particle concentration c̄0 = 0.2
(corresponding to an effective volume-based concentration c0 = 0.065). For these low
values of S and b, the particles exhibit relatively slow clustering. Two computations
were conducted, one with no adhesion and one with adhesion parameter φ = 10,
where for the adhesive case particles were not allowed to adhere to the box walls. A
comparison of the r.m.s. value of the y-position of the particles for both of these cases
is given in figure 16. The value of yrms oscillates in phase with the box oscillation, so
we have fit a tenth-order polynomial to each curve to eliminate the high-frequency
oscillations. The value of yrms decreases more rapidly for the case with adhesion
during most of the computation.

A time series showing the formation of aggregates is given in figure 17. The
aggregates first form on the sides of the box, where the amplitude of particle oscillation
is the largest. They have a dendritic structure, stretching inward towards the centre
of straining. With each oscillation of the box, additional particles collide with and are
captured by these dendritic structures, leaving a small particle-free region surrounding
each particle aggregate. As this process continues over time, an increasing percentage
of the particles are captured, and the aggregates grow to such an extent that they
connect with one another. Over a long time a quasi-stationary state is reached in
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(a) (b)

(c) (d)

Figure 17. Time series showing particle positions and box locations at the current time (solid)
and the initial time (dashed) for a case with particle adhesion at times (a) t = 21.1, (b) 71.0,
(c) 200.5 and (d ) 379.1.

which the particles are contained in a loose mesh of connecting aggregates, thus
inhibiting further contraction of the structure towards the centre of straining due
to aggregate contact. This aggregate mesh breaks into smaller pieces periodically at
certain contact points as the particles are advected by the oscillating straining flow,
only to reconnect at these points after the straining flow has reversed.

The effect of particle adhesion for peristaltic oscillations in a channel are
examined for a case with amplitude ratio η =0.4, dimensionless wavelength λ=10
(corresponding to α = 0.63), particle radius ε = 0.02, flow Reynolds number ReF =10
and average area-based particle concentration c̄0 = 0.13 (corresponding to an effective
volume-based concentration of c0 = 0.035). For this case the particle Stokes number
is St = 3 × 10−4, so the rate of clustering is expected to be small. Computations are
performed with no adhesion and with adhesion parameter values of φ = 10, 40 and
100. A comparison of the r.m.s. values of the particle y-position for the case with no
adhesion and that with φ =10 is given in figure 18, where a 10th-order polynomial is
fit to the curves to smooth out the oscillations arising from the peristaltic contractions.
The values of yrms for the cases with φ = 40 and 100 are almost identical to that with
φ = 10. The case with no adhesion exhibits an initial reduction in yrms , after which it
appears to be nearly flat, indicating negligible particle clustering towards the nodal
points of the straining field. The cases with adhesion, on the other hand, exhibit a
steady reduction in yrms with time, although the rate of clustering is still small.

A plot showing particle positions at time t = 498.8, after about 159 oscillation
periods, is given in figure 19 for cases with φ = 0 (no adhesion), 10 and 100. The lines
in the plots indicate the wall positions at the given time. All cases exhibit a reduction
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Figure 18. Comparison of r.m.s. y-position of particles for peristaltic oscillations with no
adhesion (dashed line) and with adhesion parameter φ = 10 (solid line) for a case with η = 0.4,
fit using 10th-order polynomials.

(a)

(b)

(c)

Figure 19. Comparison of particle positions for peristaltic oscillations (a) with no adhesion,
(b) with adhesion parameter φ =10 and (c) with adhesion parameter φ = 100 at time t =498.8.
Solid lines indicate the current position of the channel walls.

in particle y-positions near the nodal positions at x = 0, 5 and 10, as well as a region
of high particle concentration along the sides of the particle-filled region. For the
cases with adhesion, the particles have formed small ball-like aggregates throughout
the flow field. These aggregates are substantially larger near the nodal point at x = 5
and within the high-concentration region along the sides of the particle-filled region.
Also, the aggregate size is considerably larger for the φ = 100 case than for the φ = 10
case. For instance, in figure 20(a) we plot the time variation of the average number of
particles per aggregate for the cases with φ = 10, 40 and 100. The number of particles
per aggregate fluctuates with the contractions of the channel walls but in the mean
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Figure 20. Plots for peristaltic waves, showing (a) linear fit to average number of particles per
aggregate as a function of time for φ =10 (solid line), 40 (dashed line) and 100 (dashed–dotted
line) and (b) average distribution of aggregate sizes for t > 100 for φ = 10 (white bars), 40
(grey bars) and 100 (black bars).

follows a nearly linear increase with time over the computational period. We have
therefore approximated the time variation in both cases with a ‘best fit’ line.

The distribution of aggregate size, averaged over time for t > 100, is illustrated in
figure 20(b) by plotting the percentage of the total particles contained in aggregates
composed of n particles, including particles that are not in an aggregate. The aggregate
size is sorted into a series of bins, where the bin width increases logarithmically, and
the number written under each bin is the mean of the maximum and minimum values
of n for that bin. The limits of each bin are given in table 3, where the largest size
aggregate has n< 64. The case with φ = 10 exhibits a nearly bell-shaped distribution,
with the maximum close to six particles per aggregate. For φ =40, the number of
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Bin number Range of n

1 n = 2
2 2< n � 4
3 4< n � 8
4 8< n � 16
5 16< n � 32
6 32< n � 64

Table 3. Bins used to show distribution of number of particles per aggregate.

aggregates with 3–16 particles decreases, but there is a substantial increase in the
number of aggregates with 16–32 particles per aggregate. The case with φ = 100 has a
large number of particles contained in aggregates in the two largest bins, containing
16–64 particles, and a substantial number of particles in aggregates with 2–4 particles
but a lower number of particles with aggregates with sizes in between these extremes.
The larger bin sizes would seem to correspond to aggregates located along the outside
of the channels and near the nodal point at x = 5, whereas the smaller bin sizes would
appear to correspond to aggregates in the remainder of the flow.

7. Conclusions
We have demonstrated both theoretically and through numerical computations

using a DEM that particles suspended in a fluid subjected to oscillating straining
cluster around the nodal points of the straining field. While this clustering occurs at
all values of the Stokes number, the rate of cluster formation increases with increase
in Stokes number. The DEM computations indicate that inclusion of a concentration-
dependent friction factor in the particle drag expression causes this clustering to be
observed even for certain cases exceeding the stability limit of the associated Matheiu
equation. For particles contained in an oscillating box, the inward particle drift due
to the oscillating straining flow is ultimately limited by particle contact, leading
to formation of a diamond-shaped particle cluster. Computations with particles of
different sizes show that the drift rate of the larger particles is faster than that of the
smaller particles, such that a separation of particles by size results in which the centre
of the resulting cluster is formed of the larger particles, and the sides are coated
with the smaller particles. Oscillatory clustering can suspend particles in the presence
of a downward gravitational force, where the final state for isolated particles is a
limit-cycle oscillation about some mean position which is displaced downward from
the straining center. Theoretical predictions for the centroid and oscillation amplitude
of this limit cycle are found to be in reasonable agreement with values obtained
from DEM simulations for particles in an oscillating box, with differences attributed
primarily to the effect of particle crowding on the drag force in the DEM simulations.
Computations are performed using DEM for particle transport in a channel with
standing wave contractions of the channel walls. The fluid flow is determined using
lubrication theory, so the flow Reynolds number is restricted to be relatively small.
It is observed that particles within the channel drift towards the nodal points of the
straining flow both in the lateral direction and in the direction along the length of
the channel.

The cases with an oscillating box and peristaltic standing waves are also examined
in the presence of adhesive forces between the particles. For the oscillating box, it is
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observed that oscillation of the straining rate causes aggregates to form along the edge
of the box, which then propagate inward as dendritic structures, eventually forming a
mesh of aggregates that break and reform periodically at certain points in phase with
the box oscillations. The particles are observed to initially drift inward somewhat
more rapidly in the presence of adhesive forces, but the limiting particle structure is
more porous than for the case with no adhesion due to contact and adhesion between
the particle aggregates. For the peristaltic oscillations of a channel, particle adhesion
is also observed to increase the inward drift of the particles and lead to aggregate
formation both within the high-concentration region near the channel walls and in
the region near the nodal points of the straining flow.

There are a number of limitations to our numerical method which suggest the
need to examine these problems experimentally or with more detailed computational
methods in future work. In particular, the flow Reynolds number restriction for the
peristaltic wave solution limits the particle Stokes number to fairly small values, for
which the particle drift rate is small. Secondly, the fluid flow was assumed to be
independent of the particles, which would break down in highly concentrated flows.

Despite these limitations, we can draw some tentative conclusions from our
results regarding the importance of the oscillatory clustering phenomenon for several
practical problems. For instance, for transport of chyme in the human colon, the
contraction frequency is about ω ∼= 0.05 s−1; the flow Reynolds number is about
ReF = 10; and the amplitude ratio is about η = 0.5 (Gramiak et al., 1971; Brown
et al., 1995). The particle Stokes number is related to the dimensionless diameter by
St = ε2ReF /18χ . For very small particles in the colon, with diameter about d = 0.1mm,
the dimensionless particle diameter for a section of the colon with L = 2 cm radius is
ε = 0.005 and the resulting Stokes number is St =O(10−5). For particles of this size,
the straining parameter is so small that the particle drift due to wall contractions
is negligible. The primary effect of the colonic contractions for particles of this size
is to increase the collision rate with other small particles, thereby increasing the
aggregation rate. On the other hand, for a particle or an aggregate in the colon
with diameter of 2 mm, the Stokes number is about 0.005. This Stokes number is
about half the value used for the computations in figure 14, which exhibit significant
clustering of particles at the nodal points after about 60 wall oscillations. Using the
estimate that the drift rate varies approximately with S2, as indicated by result (2.8),
suggests that similar amount of clustering would occur for 2 mm diameter particles
in the colon within about 240 oscillations, which using a contraction period of 30
seconds (as is typical of the colon) indicates a time requirement of about 2 hours to
produce clustering of 2 mm particles at the nodal points. The drift rate induced by
oscillatory clustering therefore acts to transport larger neutrally buoyant particles and
aggregates, with diameters of order the of 2 mm or larger, away from the colon walls
towards the nodal points of the straining flow within the tube centre, thus aiding in
clearing these larger particles and aggregates away from the region in which water is
withdrawn through the colon walls.

In engineering systems, we can manipulate the oscillation frequency to increase the
Stokes number, thereby increasing the particle drift rate. For instance, for a 1 mm
diameter aggregate of algae cells immersed in water, the Stokes number is about 0.1
when the oscillation frequency is only ω =3.6 s−1, corresponding to an oscillation
period of about 2 seconds. The corresponding value of the straining parameter at the
nodal point is S = 3η St ∼= 0.1 with an amplitude ratio of about η ∼= 0.3, for which
case our computations indicate that an algae solution would quickly form clusters at
the straining nodal points of the flow.
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One of the interesting aspects of the oscillatory clustering phenomenon is that for
aqueous solutions it is most effective for particles in the range of 1 mm diameter,
yielding particle Stokes numbers in the range of 0.1–0.5. The reason for the dominance
of this range of Stokes number is that the clustering phenomenon is an artefact of
the particle inertial overshoot, so it is most effective for cases with significant particle
inertia. The acoustic radiation force resulting from ultrasound waves, on the other
hand, has been widely used for biological cells and for particles in micro-channels,
with particle diameters of the order of 10 μm. Particles this small have very small
Stokes numbers, so the oscillatory clustering phenomenon is not generally as effective.
These two approaches are therefore complementary to each other and might be used
either singly or in unison to induce clustering and aggregation for a wide range of
particle sizes.
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particle transport, which motivated this investigation. Funding was provided by the
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J. C., Rodrı́gues-Maroto, J. J., Gómez-Moreno, F. J., Bahillo-Ruiz, A., Martin-Espigares,

M. & Acha, M. 1999 Application of acoustic agglomeration to reduce fine particle emissions
from coal combustion plants. Environ. Sci. Technol. 33, 3943–3849.

Gramiak, R., Ross, P. & Olmstead, W. W. 1971 Normal motor activity of the human colon: com-
bined radiotelemetric manometry and slow-frame cineroentgenography. Am. J. Roentgenol.
Radium Ther. Nucl. Med. 113 (2), 301–309.

Gunderson, H., Rigas, H. & van Vleck, F. S. 1974 A technique for determining stability regions
for the damped Mathieu equation. SIAM J. Appl. Math. 26 (2), 345–349.

Hartley, F. T. 2000 Miniature peristaltic pump technology and applications. J. Advanced Mater. 32
(3), 16–22.



Particle clustering in periodically forced straining flows 99

Hertz, H. 1882 Über die Berührung fester elastische Körper. J. Reine Angew. Math. 92, 156–171.

Hung, T. K. & Brown, T. D. 1976 Solid-particle motion in two-dimensional peristaltic flows.
J. Fluid Mech. 73, 77–96.

Jaffrin, M. Y. 1973 Inertia and streamline curvature effects on peristaltic pumping. Intl J. Engng
Sci. 11 (6), 681–699.

Jaffrin, M. Y. & Shapiro, A. H. 1971 Peristaltic pumping. Annu. Rev.Fluid Mech. 3, 13–36.

Johnson, K. L., Kendall, K. & Roberts, A. D. 1971 Surface energy and the contact of elastic
solids. Proc. R. Soc. London A 324, 301–313.

Joseph, G. G., Zenit, R. Hunt, M. L. & Rosenwinkel, A. M. 2001 Particle–wall collisions in a
viscous fluid. J. Fluid Mech. 433, 329–346.
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